Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

26 Development of “BF-Coat” for Snowmobile Piston

2002-10-29
2002-32-1795
The pistons in a snowmobile engine are subjected to severe temperature conditions not only because snowmobiles are operated in extremely cold temperatures but also because the engine has a high output per unit volume of approximately 150kW/liter. The temperature of the piston top may go from -40°C (when a cold engine is started) to 400°C or higher (when the engine is running at full load). When the piston and cylinder inner wall are cold, the performance of the lubricating oil drops; when they are hot, scuffing may be produced by problems such as tearing of the oil film between the piston and cylinder. When the engine is run at full load for a long time, moreover, the piston is subjected to prolonged high-temperature use, which is conducive to the production of piston boss hole abrasion and ring groove adhesive wear.
Technical Paper

3 Load Cell Tumble Meter Development

2008-12-02
2008-01-3004
This paper will describe the development of the 3-load cell tumble meter. This is a new method for measuring the tumble component of in-cylinder mixture motion. In-cylinder mixture motion is an important parameter for understanding and improving combustion stability of piston engines.
Technical Paper

3-D CFD Analysis of CO Formation in Diesel Combustion - The use of intake air throttling to create reducing atmospheres for NSR catalysts -

2011-08-30
2011-01-1841
The efficiency of the NOx Storage and Reduction (NSR) catalysts used in the aftertreatment of diesel engine exhaust gases can potentially be increased by using reactive reductants such as CO and H₂ that are formed during in-cylinder combustion. In this study, a multi-dimensional computational fluid dynamics (CFD) code coupled with complex chemical analysis was used to study combustion with various fuel after-injection patterns. The results obtained will be useful in designing fuel injection strategies for the efficient formation of CO.
Technical Paper

3-D Diesel Spray Simulations Using a New Detailed Chemistry Turbulent Combustion Model

2000-06-19
2000-01-1891
Until recently, the application of the detailed chemistry approach as a predictive tool for engine modeling has been sort of a “taboo” for different reasons, mainly because of an exaggerated rigor to the chemistry/turbulence interaction modeling. In terms of this ideology, if the interaction cannot be simulated properly, the detailed chemistry approach makes no sense. The novelty of the proposed methodology is the coupling of a generalized partially stirred reactor, PaSR, model with the high efficiency numerics to treat detailed oxidation kinetics of hydrocarbon fuels. In terms of this approach, chemical processes are assumed to proceed in two successive steps: the reaction follows after the micro-mixing is completed on a sub-grid scale.
Technical Paper

3-D LDV Measurement of In-Cylinder Air Flow in a 3.5L Four-Valve SI Engine

1995-02-01
950648
In-cylinder flows in a motored four-valve SI engine were examined by simultaneous three-component LDV measurement. The purpose of this study was to develop better physical understanding of in-cylinder flows and quantitative methods which correlate in-cylinder flows to engine performance. This study is believed to be the first simultaneous three-component LDV measurement of the air flow over a planar section of a four-valve piston-cylinder assembly. Special attention is paid to the tumble formation process, three-dimensional turbulent kinetic energy, and measurement of the tumble ratio. The influence of the induction system and the piston geometry are believed to have a significant effect on the in-cylinder flow characteristics. Using LDV measurement, the flows in two different piston top geometries were examined. One axial plane was selected to observe the effect of piston top geometries on the flow field in the combustion chamber.
Technical Paper

3-D Modeling of Conventional and HCCI Combustion Diesel Engines

2004-10-25
2004-01-2964
An investigation of the possibility to extend the 3-dimensional modeling capabilities from conventional diesel to the HCCI combustion mode simulation was carried out. Experimental data was taken from a single cylinder engine operating with early injections for the HCCI and a split-injection (early pilot+main) for the high speed Diesel engine operation. To properly phase the HCCI mode in the experiments, high amounts of cooled EGR and a decreased compression ratio were used. In numerical simulation performed using KIVA3-V code, modified to incorporate the Detailed Chemistry Approach the same conditions were reproduced. Special attention is paid on the analysis of the events leading up to the auto-ignition, which was reasonably well predicted.
Technical Paper

3-D Modeling of Heat Transfer in Diesel Engine Piston Cooling Galleries

2005-04-11
2005-01-1644
Ever increasing specific power of diesel engines has put huge demand on effective thermal management of the pistons for the desired reliability and durability. The piston temperature control is commonly achieved by injecting cooling oil into piston galleries, but the design of the cooling system as well as the boundary conditions used in FEA simulations have so far relied mostly on empirical methods. A numerical procedure using 3D computational fluid dynamics (CFD) has therefore been developed to simulate the cooling process and to estimate the cooling efficiency of gallery. The model is able to predict the detailed oil flow and heat transfer in gallery, of different designs and engine applications, under dynamic conditions. The resulted spatially resolved heat transfer coefficient from the CFD model, with better accuracy, enables improved prediction of piston temperature in finite element analysis (FEA).
Technical Paper

3-D Numerical Simulation of Transient Heat Transfer among Multi-Component Coupling System in Internal Combustion Chamber

2008-06-23
2008-01-1818
A 3-D numerical analysis model of transient heat transfer among the multi-component coupling system in combustion chamber of internal combustion engine has been developed successfully in the paper. The model includes almost all solid components in combustion chamber, such as piston assembly, cylinder liner, cylinder head gasket, cylinder head, intake valves and exhaust valves, etc. With two different coupling heat transfer modes, one is the lubricant film heat conduction between two moving components, another is the contact heat conduction between two immovable solid components, and with the direct coupled-field analysis method of FEM, the heat transfer relation among the components is established. The simulation result dedicates the transient heat transfer process among the components such as moving piston assembly and cylinder liner, moving valves and cylinder head. The effect of cylinder head gasket on heat transfer among the components is also studied.
Technical Paper

34 Experimental Analysis of Piston Slap from Small Two-Stroke Gasoline Engine

2002-10-29
2002-32-1803
This project is an experimental investigation and optimization of piston slap noise in small two-stroke gasoline engine. Piston slap is one of the most significant mechanical noise sources in an internal combustion engine. It is a dynamic impact phenomenon between the piston and the cylinder block caused by changes in the lateral forces acting on the piston. The change in cylinder block vibration level caused by the piston impact is considered as a measure of piston slap during this experiment. The intensity of piston slap is measured in terms of vibration level in ‘g’ units, by means of accelerometers mounted on the cylinder block with Top Dead Center (TDC) and Bottom Dead Center (BDC) marker. For the design of low noise engines, all the major parameters, which contribute to piston slap, are listed and the critical four are examined through additional experiments.
Technical Paper

35 Engine Performance of the Small Compression Ignition Engine with DME Low Pressure Injection

2002-10-29
2002-32-1804
In the research of DME compression ignition engine, there are a lot of reports on the high fuel pressure systems which are used in the common-rail fuel injector and others for the DME mixture formation promotion. However, the initial development-cost of these fuel supply systems will be increased for small compression ignition engines. On the other hand, it has been understood that excellent thermal efficiency of DME compression ignition engine was obtained at the appropriate fuel injection timing by using the electronic controlled injector with low pressure injection. In this paper, the stabilization of combustion on DME compression ignition engine with low pressure injection was investigated for the influence of the fuel pressure and the combustion assistance with homogeneous charge.
Technical Paper

3D Modeling Applied to the Development of a DI Diesel Engine: Effect of Piston Bowl Shape

1997-05-01
971599
Multidimensional computations are carried out to aid in the development of a direct injection Diesel engine. Intake, compression, injection and combustion processes are calculated for a turbo-charged direct injection Diesel engine with a single intake valve. The effects of engine speed and engine load, as well as the influence of exhaust gas recirculation are compared to experimental measurements. The influence of piston bowl shape is investigated. Three dimensional calculations are performed using a mesh built from the complete CAD definition of the engine, intake port, cylinder and piston bowl. The injection characteristics are found to be of primary importance in the control of the combustion process. At a given injection set, piston bowl shape can be optimized for fluid dynamic and combustion.
Technical Paper

3D Numerical Characterization of a Multi-Holes Injector in a Quiescent Vessel and Its Application in a Single-Cylinder Research Engine Using Ethanol

2017-11-07
2017-36-0360
The fuel injection in internal combustion engines plays a crucial role in the mixture formation, combustion process and pollutants' emission. Its correct modeling is fundamental to the prediction of an engine performance through a computational fluid dynamics simulation. In the first part of this work a tridimensional numerical simulation of a multi-hole’s injector, using ethanol as fuel, is presented. The numerical simulation results were compared to experimental data from a fuel spray injection bench test in a quiescent vessel. The break up model applied to the simulation was the combined Kelvin-Helmholtz Rayleigh-Taylor, and a sensitivity analysis of the liquid fuel penetration curve, as well on the overall spray shape was performed according to the model constants. Experimental spray images were used to aid the model tuning. The final configuration of the KH-RT model constants that showed best agreement with the measured spray was C3 equal to 0.5, B1, 7 and Cb, 0.
Technical Paper

3D Numerical Simulation of Fuel injection and Combustion Phenomena in DI Diesel Engines

1989-02-01
890668
Recently the analysis of air-fuel mixing and combustion has become important under the stringent emissions regulations of diesel engines. In the case of gasoline engines, the KIVA computer program has been developed and used for the analysis of combustion. In this paper, the calculations of combustion phenomena in DI diesel engines are performed by modifying the KIVA program so as to be applicable to multi-hole nozzles and arbitrary patterns of injection rate. The thermophysical and ther-mochemical properties of gasoline are altered to those diesel fuel. In order to investigate the ability of this modified program, the calculations are compared with the experiments on single cylinder engines concerning the pressure, flame temperature and mass change of chemical species in cylinders. Furthermore, the calculation for the heavy duty DI diesel engine is performed with this diesel combustion program.
Technical Paper

3D Spray Measurement System for High Density Fields Using Laser Holography

2002-03-04
2002-01-0739
To develop injection nozzles and to improve the numerical simulation technology of fuel spray, a measuring technology to analyze the process of disintegration into droplets accurately is required. Performances required by a spray droplets measuring device are: “ability to measure in the combustion condition inside the engine cylinder”, “ability to measure the diameter of spray droplets in high-density fields”, “ability to measure the structure of spray droplets in 3D”, and an improved measuring accuracy of non-spherical droplets. These elements are required in order to analyze the spray droplets structure of gasoline direct injection engines. As a promising method to satisfy these requirements, the laser holography method has been already suggested. However, it has some drawbacks, such as a difficulty in measuring spray droplets in high-density fields and over a long analysis period.
Technical Paper

3D Vortex Simulation of Intake Flow in a Port-Cylinder with a Valve Seat and a Moving Piston

1996-05-01
961195
A Lagrangian random vortex-boundary element method has been developed for the simulation of unsteady incompressible flow inside three-dimensional domains with time-dependent boundaries, similar to IC engines. The solution method is entirely grid-free in the fluid domain and eliminates the difficult task of volumetric meshing of the complex engine geometry. Furthermore, due to the Lagrangian evaluation of the convective processes, numerical viscosity is virtually removed; thus permitting the direct simulation of flow at high Reynolds numbers. In this paper, a brief description of the numerical methodology is given, followed by an example of induction flow in an off-centered port-cylinder assembly with a harmonically driven piston and a valve seat situated directly below the port. The predicted flow is shown to resemble the flow visualization results of a laboratory experiment, despite the crude approximation used to represent the geometry.
Technical Paper

3D-CFD Full Engine Simulation Application for Post-Oxidation Description

2021-09-05
2021-24-0016
The introduction of real driving emissions cycles and increasingly restrictive emissions regulations force the automotive industry to develop new and more efficient solutions for emission reductions. In particular, the cold start and catalyst heating conditions are crucial for modern cars because is when most of the emissions are produced. One interesting strategy to reduce the time required for catalyst heating is post-oxidation. It consists in operating the engine with a rich in-cylinder mixture and completing the oxidation of fuel inside the exhaust manifold. The result is an increase in temperature and enthalpy of the gases in the exhaust, therefore heating the three-way-catalyst. The following investigation focuses on the implementation of post-oxidation by means of scavenging in a four-cylinder, turbocharged, direct injection spark ignition engine. The investigation is based on detailed measurements that are carried out at the test-bench.
Journal Article

3D-CFD RANS Methodology to Predict Engine-Out Emissions with Gasoline-Like Fuel and Methanol for a DISI Engine

2022-09-16
2022-24-0038
Renewable fuels, such as bio- and e-fuels, are of great interest for the defossilization of the transport sector. Among these fuels, methanol represents a promising candidate for emission reduction and efficiency increase due to its very high knock resistance and its production pathway as e-fuel. In general, reliable simulation tools are mandatory for evaluating a specific fuel potential and optimizing combustion systems. In this work, a previously presented methodology (Esposito et al., Energies, 2020) has been refined and applied to a different engine and different fuels. Experimental data measured with a single cylinder engine (SCE) are used to validate RANS 3D-CFD simulations of gaseous engine-out emissions. The RANS 3D-CFD model has been used for operation with a toluene reference fuel (TRF) gasoline surrogate and methanol. Varying operating conditions with exhaust gas recirculation (EGR) and air dilution are considered for the two fuels.
Technical Paper

3d-Elastohydrodynamic Simulation Model for Structure-Borne Noise Analyses of a DI Diesel Engine

2016-06-15
2016-01-1854
The present article is concerned with the investigation of the engine noise induced by the piston slap of an actual passenger car Diesel engine. The focus is put on the coherence of piston secondary movement, impact of the piston on the cylinder liner, generated structure-borne noise excitation of the engine structure and the occurring acceleration on the engine surface. Additionally, the influence of a varying piston-pin offset and piston clearance is evaluated. The analyses are conducted using an elastohydrodynamic multi-body simulation model, taking into account geometry, stiffness and mass information of the single components as well as considering elastic and hydrodynamic behavior of the piston-liner contact. A detailed description of the simulation model will be introduced in the article. The obtained results illustrate the piston secondary motion and the related structure-borne noise on the engine surface for several piston-pin offsets and piston clearances.
Technical Paper

50cc Two-Stroke Engines for Mopeds, Chainsaws and Motorcycles with Catalysts

1990-09-01
901598
4 different engine concepts with Catalyst have been developed in regard to pollutant emission, fuel efficiency and performance. Despite the wide power range from 1,2 HP to 12 HP and the different applications of these engines to Mopeds, Chainsaws and Motorcycles, the problems to solve have been similar. Internal measures such as optimized carburetion, cooling, piston shape and clearance, scavenging and tuning of the exhaust must enable the engine to run on the lean side. This is imperative to supply sufficient oxygen for the exothermal reaction and to keep the energy to be converted in the Oxidation Catalyst at a minimum. Secondary measures have been taken to shorten the Catalyst's light-off and to keep the temperature range in limits.
Technical Paper

55 Development of a Fuel Injection System for High-Performance Motorcycles

2002-10-29
2002-32-1824
In Sports Motorcycles category, fuel injection systems have been employed more popularly in recent years, and we have been also developing motorcycles introducing fuel injection systems in the category of 600cc - 1400cc displacement. Sports Motorcycles need to be controlled in a wide range from idling to over 10000rpm. Better throttle response, high power and low fuel consumption are also required. Therefore, adding to optimizations of inlet system layout, fuel injection amount, injection timing and ignition timing, the authors have applied to some models electric control devices such as SDTV (Dual Throttle Valve System) that controls intake air amount with secondary throttle valve located upstream of primary throttle valve and SET (Exhaust Tuning System) that controls exhaust pressure by opening angle of an exhaust valve installed in an exhaust pipe to improve the torque characteristics.
X